KLOOSTERMAN SUMS AND A MEAN-VALUE FOR DIRICHLET POLYNOMIALS

被引:28
作者
WATT, N [1 ]
机构
[1] UNIV WALES COLL CARDIFF,SCH MATH,CARDIFF CF2 4AG,S GLAM,WALES
关键词
D O I
10.1006/jnth.1995.1086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a(1), a(2), a(3),... be complex numbers. Then, for epsilon > 0, M greater than or equal to 1 and T greater than or equal to 1, [GRAPHICS] where zeta(s) is Riemann's zeta-function and C-epsilon depends only on epsilon. The proof is based on a technical refinement within the circle of ideas to be found in Deshouillers and Iwaniec's paper: Kloosterman sums and Fourier coefficients of cusp forms (Invent. Math. 70 (1982), 219-288). (C) 1995 Academic Press, Inc.
引用
收藏
页码:179 / 210
页数:32
相关论文
共 29 条
[1]   POWER MEAN-VALUES FOR DIRICHLET POLYNOMIALS AND THE RIEMANN ZETA-FUNCTION .2. [J].
DESHOUILLERS, JM ;
IWANIEC, H .
ACTA ARITHMETICA, 1984, 43 (03) :305-312
[2]   KLOOSTERMAN SUMS AND FOURIER COEFFICIENTS OF CUSP FORMS [J].
DESHOUILLERS, JM ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1982, 70 (02) :219-288
[3]   POWER MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION [J].
DESHOUILLERS, JM ;
IWANIEC, H .
MATHEMATIKA, 1982, 29 (58) :202-212
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[5]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[6]  
HALBERSTAM H, 1989, NUMBER THEORY TRACE, P331
[7]   PRIMES IN SHORT INTERVALS [J].
HARMAN, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (03) :335-348
[8]   12TH POWER MOMENT OF THE RIEMANN-FUNCTION [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1978, 29 (116) :443-462
[9]  
HEATHBROWN DR, 1983, 1982 ICM WARS
[10]  
HUXLEY M, 1990, AUTOMORPHIC FORMS AN, P65