COMPARISON OF CARS MEASUREMENTS AND CALCULATIONS OF THE STRUCTURE OF LAMINAR METHANE-AIR COUNTERFLOW DIFFUSION FLAMES

被引:7
|
作者
DREIER, T
LANGE, B
WOLFRUM, J
ZAHN, M
BEHRENDT, F
WARNATZ, J
机构
[1] UNIV HEIDELBERG,SONDERFORSCHUNGSBEREICH 123,D-6900 HEIDELBERG,FED REP GER
[2] TH KARLSRUHE,ENGLER BUNTE INST,D-6900 HEIDELBERG,FED REP GER
关键词
Air - MATHEMATICAL TECHNIQUES - Finite Element Method - Methane - SPECTROSCOPY - Applications;
D O I
10.1002/bbpc.19860901116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Information on the structure of laminar diffusion flames under the influence of the strain of an inhomogeneous velocity field is essential for the understanding of turbulent diffusion flames. To simulate the structure of the stagnation-point flame the corresponding governing equations for enthalpy, momentum, and chemical species are to be solved. By boundary layer approximations and a coordinate transformation these equations are transformed into a one dimensional form, which is integrated with a finite differences method. Transport is described by a simplified multicomponent model. The detailed reaction mechanism consists of more than 250 elementary steps and 39 chemical species. - For comparison with the numerical results Coherent Anti-Stokes Raman Scattering (CARS) is used to determine temperature and concentration profiles in an atmospheric pressure CH//4/air counterflow diffusion flame.
引用
收藏
页码:1010 / 1015
页数:6
相关论文
共 50 条
  • [31] Numerical simulation of methane-air turbulent diffusion flames
    Sekhar, PVRC
    Sundararajan, T
    Shet, USP
    IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX, 1997, : 2351A - +
  • [32] NITRIC-OXIDE AND HYDROGEN-CYANIDE FORMATION IN LAMINAR METHANE-AIR DIFFUSION FLAMES
    MITCHELL, RE
    SAROFIM, AF
    YU, R
    COMBUSTION SCIENCE AND TECHNOLOGY, 1980, 21 (3-4) : 157 - 167
  • [33] Quantitative laser-based measurements and detailed chemical kinetic modeling of nitric oxide concentrations in methane-air counterflow diffusion flames
    Univ of Michigan, Ann Arbor, United States
    Symp Int Combust, (1401-1409):
  • [34] Universal relationships in sooting methane-air diffusion flames
    Kaplan, CR
    Patnaik, G
    Kailasanath, K
    COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 131 (1-6) : 39 - 65
  • [35] FLAMMABILITY LIMIT AND LIMIT-TEMPERATURE OF COUNTERFLOW LEAN METHANE-AIR FLAMES
    CHEN, ZH
    SOHRAB, SH
    COMBUSTION AND FLAME, 1995, 102 (1-2) : 193 - 199
  • [37] Experiment on the premixed laminar flames of coal bed methane-air mixtures
    Zheng, Bin
    Liu, Yongqi
    Li, Ping
    Liu, Ruixiang
    Gao, Zhenqiang
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2009, 40 (08): : 23 - 26
  • [38] Inert Gas Influence on Propagation Velocity of Methane-air Laminar Flames
    Mitu, Maria
    Giurcan, Venera
    Razus, Domnina
    Oancea, Dumitru
    REVISTA DE CHIMIE, 2018, 69 (01): : 196 - 200
  • [39] CARS TEMPERATURE-MEASUREMENTS IN SOOTING, LAMINAR DIFFUSION FLAMES
    BOEDEKER, LR
    DOBBS, GM
    COMBUSTION SCIENCE AND TECHNOLOGY, 1986, 46 (3-6) : 301 - 323
  • [40] Thermal diffusion effects in hydrogen-air and methane-air flames
    Ern, A
    Giovangigli, V
    COMBUSTION THEORY AND MODELLING, 1998, 2 (04) : 349 - 372