R-SEQUENCEABILITY AND R-ASTERISK-SEQUENCEABILITY OF ABELIAN 2-GROUPS

被引:9
作者
HEADLEY, P [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(94)90396-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group of order n is said to be R-sequenceable if the nonidentity elements of the group can be listed in a sequence a1, a2, ..., a(n-1) such that the quotients a1(-1)a2, a2(-1)a3, ..., a(n-2)-1a(n-1), a(n-1)-1a1 are distinct. An abelian group is R*-sequenceable if it has an R-sequencing a1, a2, ..., a(n-1) such that a(i-1)a(i+1) = a(i) for some i(subscripts are read modulo n-1). Friedlander, Gordon and Miller (1978) showed that an R*-sequenceable Sylow 2-subgroup is a sufficient condition for a group to be R-sequenceable. In this paper we also show that all noncyclic abelian 2-groups are R*-sequenceable except for F2 x F4 and F2 x F2 x F2.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 6 条
[1]  
Denes J., 1991, ANN DISCRETE MATH, V46
[2]  
FRIEDLANDER RJ, 1978, 9TH P SE C COMB GRAP, V21, P307
[3]  
Hall M., 1955, PAC J MATH, V5, P541
[4]  
KEEDWELL AD, 1993, ANN DISCRETE MATH, V18, P535
[5]  
RINGEL G, 1974, NOT AM MATH SOC, V21, pA95
[6]  
WANG C, R SEQUENCEABILITY DI