HAMILTONIAN-FORMALISM OF WHITHAM-TYPE HIERARCHIES AND TOPOLOGICAL LANDAU-GINSBURG MODELS

被引:101
作者
DUBROVIN, BA [1 ]
机构
[1] MV LOMONOSOV STATE UNIV,DEPT MECH & MATH,MOSCOW 119899,USSR
关键词
D O I
10.1007/BF02099286
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is involved in the Landau-Ginsburg topological models (for A(n)-Series): the Casimirs for the first P.B. give the correct coupling parameters for the perturbed topological minimal model; the correspondence {coupling parameters} --> {primary fields} is determined by the second P.B. The partition function (at the tree level) and the chiral algebra for LG models are calculated for any genus g.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 28 条
  • [1] ADLER M, 1979, INVENT MATH, V50, P219
  • [2] ON A SET OF EQUATIONS CHARACTERIZING RIEMANN MATRICES
    ARBARELLO, E
    DECONCINI, C
    [J]. ANNALS OF MATHEMATICS, 1984, 120 (01) : 119 - 140
  • [3] Balinskii A.A., 1985, SOV MATH DOKL, V32, P228
  • [4] BLOK B, IASSNSHEP915 PREPR
  • [5] Curtis C.W., 1962, REPRESENTATION THEOR
  • [6] DIJKGRAAF R, PUPT1204 PRINC PREPR
  • [7] Dobrokhotov S.Yu., 1982, SOV SCI REV MATH PHY, V3, P221
  • [8] DUBROVIN B, 1990, FUNCT ANAL APPL, V24
  • [9] DUBROVIN B, 1991, 117 SCUOL NORM SUP P
  • [10] DUBROVIN B, 1981, MATH USSR IZV, V19, P2