AN EVERYWHERE DIVERGENT HERMITE-FEJER TYPE INTERPOLATION PROCESS OF HIGHER-ORDER

被引:1
作者
SAXENA, RB
MISRA, SR
机构
关键词
D O I
10.1007/BF01949052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
[31]   HERMITE-FEJER TYPE INTERPOLATION AND KOROVKINS THEOREM [J].
KNOOP, HB ;
LOCHER, F .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (03) :383-390
[32]   Uniform or mean convergence of Hermite-Fejer interpolation of higher order for Freud weights [J].
Kasuga, T ;
Sakai, R .
JOURNAL OF APPROXIMATION THEORY, 1999, 101 (02) :330-358
[33]   HERMITE-FEJER INTERPOLATION SEQUENCES [J].
FREUD, G .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2) :175-178
[34]   HERMITE-FEJER INTERPOLATION PROCESS WITH NODES IN ROOTS OF HERMITE POLYNOMIALS [J].
NEVAI, GP .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2) :247-253
[35]   CONVERGENCE OF HERMITE-FEJER INTERPOLATION [J].
VERTESI, POH .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1971, 22 (1-2) :151-&
[36]   EXTENSIONS OF HERMITE-FEJER INTERPOLATION [J].
MILLS, TM .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06) :A580-A580
[37]   ON THE CONVERGENCE OF HERMITE-FEJER INTERPOLATION [J].
HERMAN, T .
ACTA MATHEMATICA HUNGARICA, 1985, 45 (1-2) :167-177
[38]   On normal pointsystems of Hermite-Fejer interpolation of arbitrary order [J].
Shi, YG .
JOURNAL OF APPROXIMATION THEORY, 2001, 112 (01) :44-60
[39]   Hermite and Hermite-Fejer interpolation for Stieltjes polynomials [J].
Jung, HS .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :743-766
[40]   ON THE DIVERGENCE OF HERMITE-FEJER TYPE INTERPOLATION WITH EQUIDISTANT NODES [J].
MILLS, TM ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 49 (01) :101-110