HYDRODYNAMIC LIMIT FOR A SYSTEM WITH FINITE-RANGE INTERACTIONS

被引:27
|
作者
REZAKHANLOU, F
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY
关键词
D O I
10.1007/BF02097101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a system of interacting diffusions. The variables present the amount of charge at various sites of a periodic multidimensional lattice. The equilibrium states of the diffusion are canonical Gibbs measures of a given finite range interaction. Under an appropriate scaling of lattice spacing and time, we derive the hydrodynamic limit for the evolution of the macroscopic charge density. © 1990 Springer-Verlag.
引用
收藏
页码:445 / 480
页数:36
相关论文
共 50 条
  • [41] Effect of Finite-Range Interactions on Rapidly Rotating Ultracold Bosonic Atoms
    Hamamoto, Nobukuni
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (12)
  • [42] Particles confined in arbitrary potentials with a class of finite-range repulsive interactions
    Kumar, Avanish
    Kulkarni, Manas
    Kundu, Anupam
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [43] A FINITE-RANGE FAILURE MODEL
    SIDDIQUI, SA
    BALKRISHAN
    GUPTA, S
    SUBHARWAL, M
    MICROELECTRONICS AND RELIABILITY, 1992, 32 (10): : 1453 - 1457
  • [44] THERMODYNAMIC INSTABILITIES OF NUCLEAR-MATTER AT FINITE TEMPERATURE WITH FINITE-RANGE EFFECTIVE INTERACTIONS
    VENTURA, J
    POLLS, A
    VINAS, X
    HERNANDEZ, S
    PI, M
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C247 - C258
  • [45] FINITE-RANGE SURVIVAL MODEL
    SIDDIQUI, SA
    SUBHARWAL, M
    GUPTA, S
    BALKRISHAN
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (08): : 1377 - 1380
  • [46] VIBRATIONAL PROPERTIES OF LARGE-PERIOD CRYSTALS WITH FINITE-RANGE INTERACTIONS
    MILA, F
    SZEFTEL, J
    PHYSICAL REVIEW B, 1989, 39 (08): : 5472 - 5474
  • [47] Lattice two-body problem with arbitrary finite-range interactions
    Valiente, Manuel
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [48] Hydrodynamic limit in a particle system with topological interactions
    Carinci G.
    De Masi A.
    Giardinà C.
    Presutti E.
    Arabian Journal of Mathematics, 2014, 3 (4) : 381 - 417
  • [49] LOCAL LIMIT-THEOREMS FOR SUMS OF FINITE-RANGE POTENTIALS OF A GIBBSIAN RANDOM FIELD
    GOTZE, F
    HIPP, C
    ANNALS OF PROBABILITY, 1990, 18 (02): : 810 - 828
  • [50] Validity of the no-pumping theorem in systems with finite-range interactions between particles
    Rahav, Saar
    PHYSICAL REVIEW E, 2017, 95 (01)