HYDRODYNAMIC LIMIT FOR A SYSTEM WITH FINITE-RANGE INTERACTIONS

被引:27
|
作者
REZAKHANLOU, F
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY
关键词
D O I
10.1007/BF02097101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a system of interacting diffusions. The variables present the amount of charge at various sites of a periodic multidimensional lattice. The equilibrium states of the diffusion are canonical Gibbs measures of a given finite range interaction. Under an appropriate scaling of lattice spacing and time, we derive the hydrodynamic limit for the evolution of the macroscopic charge density. © 1990 Springer-Verlag.
引用
收藏
页码:445 / 480
页数:36
相关论文
共 50 条
  • [31] Supersolid Stripe Crystal from Finite-Range Interactions on a Lattice
    Masella, Guido
    Angelone, Adriano
    Mezzacapo, Fabio
    Pupillo, Guido
    Prokof'ev, Nikolay, V
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [32] A finite-range scaling method to analyze systems with infinite-range interactions
    Aoki, Ken-Ichi
    Kobayashi, Tamao
    Tomita, Hiroshi
    PROGRESS OF THEORETICAL PHYSICS, 2008, 119 (03): : 509 - 514
  • [33] Mimicking quantum correlation of a long-range Hamiltonian by finite-range interactions
    Lakkaraju, Leela Ganesh Chandra
    Ghosh, Srijon
    Sadhukhan, Debasis
    Sen, Aditi
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [34] ISING SYSTEM WITH AN INTERACTION OF FINITE-RANGE ON CAYLEY TREE
    MORITA, T
    PHYSICA A, 1975, 83 (02): : 411 - 418
  • [36] Finite-range spin glasses in the Kac limit: free energy and local observables
    Franz, S
    Toninelli, FL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (30): : 7433 - 7446
  • [37] Liquid-vapor phase transitions for systems with finite-range interactions
    Lebowitz, JL
    Mazel, A
    Presutti, E
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 955 - 1025
  • [38] Interacting steps with finite-range interactions: Analytical approximation and numerical results
    Felipe Jaramillo, Diego
    Tellez, Gabriel
    Luis Gonzalez, Diego
    Einstein, T. L.
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [39] SPINODAL INSTABILITY IN THE THOMAS-FERMI APPROXIMATION WITH FINITE-RANGE INTERACTIONS
    LEE, SJ
    PHYSICS LETTERS B, 1991, 263 (02) : 141 - 145
  • [40] A SHAPE THEOREM FOR EPIDEMICS AND FOREST-FIRES WITH FINITE-RANGE INTERACTIONS
    ZHANG, Y
    ANNALS OF PROBABILITY, 1993, 21 (04): : 1755 - 1781