TIME-DEPENDENT PERTURBATION-VARIATION METHOD .2.

被引:18
作者
YARIS, R
机构
关键词
D O I
10.1063/1.1725187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:667 / &
相关论文
共 50 条
[21]   GAUGE-INVARIANT TIME-DEPENDENT PERTURBATION-THEORY .2. DEGENERATE CASE [J].
YANG, KH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05) :919-934
[22]   NEW METHOD FOR CONSTRUCTING SOLUTIONS TO TIME-DEPENDENT PERTURBATION EQUATIONS [J].
ALEXANDER, MH ;
GORDON, RG .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (10) :4889-+
[23]   On the perturbation method for the Stefan problem with time-dependent boundary conditions [J].
Caldwell, J ;
Kwan, YY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (08) :1497-1501
[24]   PERTURBATION-THEORY ANALYSIS OF CHAOS .2. CHAOS IN A TIME-DEPENDENT HAMILTONIAN SYSTEM [J].
SHIMIZU, T .
PHYSICA A, 1987, 145 (03) :341-360
[25]   Large deformation problem of hyperbolic shallow shells with bimodular effect: A perturbation-variation method [J].
He, Xiao-Ting ;
Wang, Xin ;
Chang, Hao ;
Sun, Jun-Yi .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (11)
[26]   NOTE ON TIME-DEPENDENT PERTURBATION THEORY [J].
WANG, IT ;
WU, TY .
NUOVO CIMENTO, 1958, 10 (02) :395-397
[27]   Quantum estimation of a time-dependent perturbation [J].
Madsen, Claus Normann ;
Valdetaro, Lia ;
Molmer, Klaus .
PHYSICAL REVIEW A, 2021, 104 (05)
[28]   Averaging with a time-dependent perturbation parameter [J].
Fajman, David ;
Heissel, Gernot ;
Jang, Jin Woo .
CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (08)
[29]   Time-Dependent Exchange Perturbation Theory [J].
Orlenko, Elena V. ;
Orlenko, Fedor E. .
2015 SCIENCE AND INFORMATION CONFERENCE (SAI), 2015, :315-320
[30]   ALTERNATE APPROACH TO TIME-DEPENDENT PERTURBATION [J].
CHAND, P ;
CABRERA, F .
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (05) :823-823