CHARACTERISTIC COHOMOLOGY OF DIFFERENTIAL-SYSTEMS .2. CONSERVATION-LAWS FOR A CLASS OF PARABOLIC EQUATIONS

被引:54
作者
BRYANT, RL [1 ]
GRIFFITHS, PA [1 ]
机构
[1] INST ADV STUDIES,PRINCETON,NJ 08540
关键词
D O I
10.1215/S0012-7094-95-07824-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:531 / 676
页数:146
相关论文
共 21 条
[11]  
Goursat E., Leçons sur L’intégration des Équations aux Dérivées Partielles du Second Ordre à Deux Variables Indépendantes, 2, (1898)
[12]  
Grayson M., The heat equation shrinks embedded plane curves to round points, J. Differential Geom, 26, pp. 285-314, (1987)
[13]  
Krasilshchik I.S., Vinogradov A.M., Nonlocal symmetries and the theory of coverings: An addendum to Vinogradovs
[14]  
Local symmetries and conservation laws, Acta Appl. Math, 2, pp. 79-96, (1984)
[15]  
Lax P., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Regional Conf. Ser. in Appl. Math, 11, (1973)
[16]  
Lepage T., Sur certaines formes différentielles associées aux equations du type de Monge-Ampère provenant du
[17]  
Calcul des Variations, Bull. Acad. Belgique Cl. Sci, 16, 5, pp. 1334-1352, (1930)
[18]  
Mikhailov A.V., Shabat A.B., Sokolov V.V., The symmetry approach to classification of integrable systems, What Is Integrability?, pp. 115-184, (1991)
[19]  
Olver P., Applications of Lie Groups to Differential Equations, 107, (1986)
[20]  
Tsujishita T., On variation bicomplexes associated to differential equations, Osaka J. Math, 19, pp. 311-363, (1982)