A NUMERICAL-ANALYSIS OF CHAOTIC BEHAVIOR IN BIANCHI IX MODELS

被引:54
作者
BURD, AB [1 ]
BURIC, N [1 ]
ELLIS, GFR [1 ]
机构
[1] SCUOLA INT SUPER STUDI AVANZATI,I-34014 TRIESTE,ITALY
关键词
D O I
10.1007/BF00756280
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we investigate the chaotic behaviour of the Bianchi IX cosmological models using techniques developed in the study of dynamical systems and chaotic behaviour. We numerically calculate the Lyapunov exponent, λ, and show that instead of converging to a constant value, it decreases steadily. We study this effect further by studying the Lyapunov exponent using short-time averages. We show that the usual method of calculating λ is invalid in the case of a cosmological model. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:349 / 363
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES
[2]   STRUCTURE OF THE COSMIC MICROWAVE BACKGROUND [J].
BARROW, JD ;
JUSZKIEWICZ, R ;
SONODA, DH .
NATURE, 1983, 305 (5933) :397-402
[3]  
BARROW JD, 1981, PHYS REP, V85, P1
[4]   THE NATURE OF TUBULENT MOTION AT LARGE WAVE-NUMBERS [J].
BATCHELOR, GK ;
TOWNSEND, AA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1949, 199 (1057) :238-255
[5]   OSCILLATORY APPROACH TO A SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
KHALATNI.IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1970, 19 (80) :525-&
[6]   RELIABILITY OF NUMERICAL STUDIES OF STOCHASTICITY .1. EXISTENCE OF TIME AVERAGES [J].
BENETTIN, G ;
CASARTELLI, M ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1978, 44 (01) :183-195
[7]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[8]  
Benettin G., 1979, INTRINSIC STOCHASTIC
[9]   A CLASS OF HOMOGENEOUS COSMOLOGICAL MODELS [J].
ELLIS, GFR ;
MACCALLUM, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (02) :108-+
[10]   QUALITATIVE AND NUMERICAL STUDY OF BIANCHI-IX MODELS [J].
FRANCISCO, G ;
MATSAS, GEA .
GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (10) :1047-1054