ASSOUAD DIMENSION OF SELF-AFFINE CARPETS

被引:54
作者
Mackay, John M. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
英国工程与自然科学研究理事会;
关键词
Assouad dimension; conformal Assouad dimension; Bedford-McMullen carpets;
D O I
10.1090/S1088-4173-2011-00232-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the Assouad dimension of the self-affine carpets of Bedford and McMullen, and of Lalley and Gatzouras. We also calculate the conformal Assouad dimension of those carpets that are not self-similar.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 13 条
[1]  
Bandt C., 2011, ARXIV11040088
[2]   Hausdorff dimension of the limit sets of some planar geometric constructions [J].
Baranski, Krzysztof .
ADVANCES IN MATHEMATICS, 2007, 210 (01) :215-245
[3]  
Bedford T., 1984, THESIS
[4]  
Binder I., 2010, CONFORMAL DIMENSION
[5]  
Burago D., 2001, COURSE METRIC GEOMET, V33, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
[6]   Dimension of non-conformal repellers: a survey [J].
Chen, Jianyu ;
Pesin, Yakov .
NONLINEARITY, 2010, 23 (04) :R93-R114
[7]  
Heinonen J., 2001, LECT ANAL METRIC SPA, DOI [10.1007/978-1-4613-0131-8, DOI 10.1007/978-1-4613-0131-8]
[8]   Conformal Assouad dimension and modulus [J].
Keith, S ;
Laakso, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (06) :1278-1321
[9]   HAUSDORFF AND BOX DIMENSIONS OF CERTAIN SELF AFFINE FRACTALS [J].
LALLEY, SP ;
GATZOURAS, D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (02) :533-568
[10]  
MACKAY JM, 2010, U LECT SERIES, V54, DOI DOI 10.1090/ULECT/054