COVERING MONOLITHIC GROUPS WITH PROPER SUBGROUPS

被引:0
作者
Garonzi, Martino [1 ]
机构
[1] Univ Padua, Dept Math, Padua, Italy
关键词
Covers; Primitive groups; Monolithic groups;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite non -cyclic group G, call Q(G) the smallest number of proper subgroups of G needed to cover G. Lucchini and Detomi conjectured that if a nonabelian group G is such that Q(G) < a(G/N) for every non -trivial normal subgroup N of G then G is monolithic, meaning that it admits a unique minimal normal subgroup. In this paper we show how this conjecture can be attacked by the direct study of monolithic groups.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 16 条
  • [1] Abdollahi A, 2007, B MALAYS MATH SCI SO, V30, P57
  • [2] Abdollahi A, 2008, PUBL MATH-DEBRECEN, V72, P167
  • [3] [Anonymous], J LONDON MATH SOC
  • [4] Ballester-Bolinches A., 2006, CLASSES FINITE GROUP
  • [5] Bhargava M, 2007, INT ELECTRON J ALGEB, V2, P83
  • [6] ON N-SUM GROUPS
    COHN, JHE
    [J]. MATHEMATICA SCANDINAVICA, 1994, 75 (01) : 44 - 58
  • [7] DETOMI E, 2008, CUBO, V10, P195
  • [8] Garonzi M., 2012, THESIS
  • [9] Covering Certain Monolithic Groups with Proper Subgroups
    Garonzi, Martino
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (02) : 471 - 491
  • [10] Covering certain wreath products with proper subgroups
    Garonzi, Martino
    Maroti, Attila
    [J]. JOURNAL OF GROUP THEORY, 2011, 14 (01) : 103 - 125