PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR CONVEX QUADRATIC CIRCULAR CONE OPTIMIZATION

被引:12
作者
Bai, Yanqin [1 ]
Gao, Xuerui [1 ]
Wang, Guoqiang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2015年 / 5卷 / 02期
基金
中国国家自然科学基金;
关键词
Interior-point methods; circular cone optimization; second-order cone optimization; Kernel function; large- and small-update methods; polynomial complexity;
D O I
10.3934/naco.2015.5.211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we focus on a class of special nonsymmetric cone optimization problem called circular cone optimization problem, which has a convex quadratic function as the objective function and an intersection of a non-self-dual circular cone and linear equations as the constraint condition. Firstly we establish the algebraic relationships between the circular cone and the second-order cone and translate the original problem from the circular cone optimization problem to the second-order cone optimization problem. Then we present kernel-function based primal-dual interior-point algorithms for solving this special circular cone optimization and derive the iteration bounds for large- and small-update methods. Finally, some preliminary numerical results are provided to demonstrate the computational performance of the proposed algorithms.
引用
收藏
页码:211 / 231
页数:21
相关论文
共 24 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]  
Anjos MF, 2012, INT SER OPER RES MAN, V166, P1, DOI 10.1007/978-1-4614-0769-0
[3]  
Bai Y., 2010, KERNEL FUNCTION BASE
[4]   Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions [J].
Bai, Y. Q. ;
Wang, G. Q. ;
Roos, C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3584-3602
[5]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[6]   Fast computation of optimal contact forces [J].
Boyd, Stephen P. ;
Wegbreit, Ben .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (06) :1117-1132
[7]   Smooth and nonsmooth analyses of vector-valued functions associated with circular cones [J].
Chang, Yu-Lin ;
Yang, Ching-Yu ;
Chen, Jein-Shan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 :160-173
[8]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[9]   Full Nesterov-Todd step infeasible interior-point method for symmetric optimization [J].
Gu, G. ;
Zangiabadi, M. ;
Roos, C. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 214 (03) :473-484
[10]   A primal barrier function Phase I algorithm for nonsymmetric conic optimization problems [J].
Matsukawa, Yasuaki ;
Yoshise, Akiko .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2012, 29 (03) :499-517