APPROXIMATING MINIMUM-COST GRAPH PROBLEMS WITH SPANNING TREE EDGES

被引:16
作者
GOEMANS, MX [1 ]
WILLIAMSON, DP [1 ]
机构
[1] CORNELL UNIV,SCH OPERAT RES & IND ENGN,ITHACA,NY 14853
基金
美国国家科学基金会;
关键词
APPROXIMATION ALGORITHMS; COMBINATORIAL OPTIMIZATION; 2-MATCHING;
D O I
10.1016/0167-6377(94)90067-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Building on work of Imielinska, Kalantari and Khachiyan, we show how to find approximate solutions for a class of NP-hard minimum-cost graph problems using only edges of a minimum-cost spanning tree. Some consequences of this work are fast 2-approximation algorithms for the 2-matching problem and its variants, as well as for simple location-routing problems.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1988, GEOMETRIC ALGORITHMS, DOI DOI 10.1007/978-3-642-97881-4
[2]   MATCHING PROBLEM WITH SIDE CONDITIONS [J].
CORNUEJOLS, G ;
PULLEYBLANK, W .
DISCRETE MATHEMATICS, 1980, 29 (02) :135-159
[3]  
EDMONDS J, 1970, P CALG INT C COMB ST, P82
[4]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[5]  
GABOW HN, 1993, 3RD P MPS C INT PROG, P57
[6]  
GOEMANS MX, 1992, 3RD P ANN ACM SIAM S, P307
[7]   A GREEDY HEURISTIC FOR A MINIMUM-WEIGHT FOREST PROBLEM [J].
IMIELINSKA, C ;
KALANTARI, B ;
KHACHIYAN, L .
OPERATIONS RESEARCH LETTERS, 1993, 14 (02) :65-71
[8]   HAMILTONIAN LOCATION-PROBLEMS [J].
LAPORTE, G ;
NOBERT, Y ;
PELLETIER, P .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1983, 12 (01) :82-89
[9]  
Laporte G., 1988, VEHICLE ROUTING METH, P163
[10]  
Preparata F. P., 2012, COMPUTATIONAL GEOMET