AN EXTREMUM VARIATIONAL PRINCIPLE FOR A CLASS OF BOUNDARY-VALUE-PROBLEMS

被引:3
作者
ATANACKOVIC, TM
DJUKIC, DS
机构
关键词
D O I
10.1016/0022-247X(83)90180-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:344 / 362
页数:19
相关论文
共 10 条
[1]   DUAL EXTREMUM PRINCIPLES AND ERROR BOUNDS FOR A CLASS OF BOUNDARY-VALUE PROBLEMS [J].
ARTHURS, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (03) :781-795
[2]  
Arthurs AM, 1970, COMPLEMENTARY VARIAT
[3]   NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR NONLINEAR BOUNDARY VALUE PROBLEMS .I. 1 DIMENSIONAL PROBLEM [J].
CIARLET, PG ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1967, 9 (05) :394-&
[4]   ERROR-BOUNDS VIA A NEW EXTREMUM VARIATIONAL PRINCIPLE, MEAN-SQUARE RESIDUAL AND WEIGHTED MEAN-SQUARE RESIDUAL [J].
DJUKIC, DS ;
ATANACKOVIC, TM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (01) :203-218
[5]  
FERGUSON NB, 1971, THESIS U WASHINGTON
[7]  
NOBLE B, 1966, 473 U WISC MATH RES
[8]   DUAL-COMPLEMENTARY VARIATIONAL PRINCIPLES IN MATHEMATICAL PHYSICS [J].
ODEN, JT ;
REDDY, JN .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (01) :1-29
[9]  
ROBINSON PD, 1971, NONLINEAR FUNCTIONAL
[10]   INTEGRAL INEQUALITIES FOR 2 FUNCTIONS [J].
TROESCH, BA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 24 (02) :128-&