Evolutionary dynamics on small-order graphs

被引:34
作者
Broom, M. [1 ]
Rychtar, J. [2 ]
Stadler, B. [3 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
[2] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[3] Univ North Carolina Greensboro, Dept Comp Sci, Greensboro, NC 27402 USA
基金
英国工程与自然科学研究理事会;
关键词
Evolutionary dynamics; fixation probability; heterogeneous graphs; star graphs;
D O I
10.1080/09720502.2009.10700618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stochastic birth-death model for structured finite populations popularized by Lieberman et al. [E. Lieberman, C. Hauert and M. A. Nowak (2005), Evolutionary dynamics on graphs, Nature, Vol. 433, pp. 312-316]. We consider all possible connected undirected graphs of orders three through eight. For each graph, using the Monte Carlo Markov Chain simulations, we determine the fixation probability of a mutant introduced at every possible vertex. We show that the fixation probability depends on the vertex and on the graph. A randomly placed mutant has the highest chances of fixation in a star graph, closely followed by star-like graphs, and the fixation probability is lowest for regular and almost regular graphs. We also find that within a fixed graph, the fixation probability of a mutant has a negative correlation with the degree of the starting vertex.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 22 条
  • [1] Evolutionary dynamics on degree-heterogeneous graphs
    Antal, T.
    Redner, S.
    Sood, V.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (18)
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Briggs K., 2007, COMBINATORIAL GRAPH
  • [4] An analysis of the fixation probability of a mutant on special classes of non-directed graphs
    Broom, M.
    Rychtar, J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2098): : 2609 - 2627
  • [5] Broom M., 2008, EVOLUTIONARY DYNAMIC
  • [6] Coevolutionary games on networks
    Ebel, H
    Bornholdt, S
    [J]. PHYSICAL REVIEW E, 2002, 66 (05) : 8 - 056118
  • [7] ERDOS P, 1960, B INT STATIST INST, V38, P343
  • [8] Hagberg A., 2007, API DOCUMENTATION MO
  • [9] Evolutionary dynamics on graphs
    Lieberman, E
    Hauert, C
    Nowak, MA
    [J]. NATURE, 2005, 433 (7023) : 312 - 316
  • [10] McKay B. D., 2007, GRAPH6 SPARSE6 GRAPH