The spatial and temporal distribution of element concentrations were monitored together with chlorophyll a as an indicator of algal density to assess the effect of phytoplankton on the elemental composition (C, N, P) of suspended materials in the lower Rhine. The high concentrations of particulate C, N and P in the river were found to decrease in the delta and to increase again in the estuarine turbidity zone. Phytoplankton blooms increased the concentrations of particulate C, N, and P significantly in the upstream part of the river. In summer 1989, 15-65% of the particulate C and 20-75% of the particulate N were attributable to phytoplankton. Together with published data these observations indicate that in eutrophic rivers, the input of organic materials from the catchment is strongly modified and supplemented by in situ growth of phytoplankton. During seaward transport the phytoplankton and the particulate elements disappeared from the river water concomitantly with the suspended matter, indicating an increased retention of these elements due to sedimentation. In contrast, soluble ammonia, nitrite and phosphate increased in the tidal reaches of the river because of local input in the harbour and city of Rotterdam and because of mineralization. Therefore the total nutrient load of the Rhine estimated at the German/Dutch border does not reflect the actual input into the sea.