NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS USING SPECTRAL TECHNIQUES

被引:30
作者
SU, YY [1 ]
KHOMAMI, B [1 ]
机构
[1] WASHINGTON UNIV,MAT RES LAB,ST LOUIS,MO 63130
基金
美国国家科学基金会;
关键词
D O I
10.1016/0021-9991(92)90237-S
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two algorithms based on spectral Chebyshev and pseudospectral Chebyshev methods are presented for solving difficult eigenvalue problems that are valid over connected domains coupled through interfacial conditions. To demonstrate the applicability of these methods, we have examined the eigenvalue problems that describe the linear stability of two superposed Newtonian and inelastic power law fluids in plane Poiseuille flow for a selected range of parameters. Both algorithms provide accurate results and the pseudospectral code appears to be more efficient in handling linear stability problems. © 1992.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 11 条
[1]  
CANUTO C, SPECTRAL METHODS FLU, P193
[2]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL, V2nd
[3]  
Gottlieb D., 1977, CBMS NSF MONOGRAPH, V26
[4]  
HERBERT T, NEUTRALE FLACHE EBEN
[5]   INTERFACIAL STABILITY AND DEFORMATION OF 2 STRATIFIED POWER LAW FLUIDS IN PLANE POISEUILLE FLOW .1. STABILITY ANALYSIS [J].
KHOMAMI, B .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 36 :289-303
[6]  
Kreiss H. O., 1973, METHODS APPROXIMATE, V10
[7]   NUMERICAL-METHOD FOR LINEAR 2-POINT BOUNDARY-VALUE PROBLEMS USING COMPOUND MATRICES [J].
NG, BS ;
REID, WH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :70-85
[8]   THE COMPOUND MATRIX-METHOD FOR ORDINARY DIFFERENTIAL-SYSTEMS [J].
NG, BS ;
REID, WH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (02) :209-228
[9]   ACCURATE SOLUTION OF ORR-SOMMERFELD STABILITY EQUATION [J].
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1971, 50 (DEC29) :689-+
[10]   LINEAR-STABILITY OF PLANE POISEUILLE FLOW OF 2 SUPERPOSED FLUIDS [J].
YIANTSIOS, SG ;
HIGGINS, BG .
PHYSICS OF FLUIDS, 1988, 31 (11) :3225-3238