OPTIMAL CONVERGENCE-RATES FOR SEMIDISCRETE APPROXIMATIONS OF PARABOLIC PROBLEMS WITH NONSMOOTH BOUNDARY DATA

被引:4
作者
CHOUDURY, G
LASIECKA, I
机构
[1] UNIV CINCINNATI,DEPT MATH SCI,CINCINNATI,OH 45221
[2] UNIV VIRGINIA,DEPT APPL MATH,CHARLOTTESVILLE,VA 22903
关键词
SEMIDISCRETE APPROXIMATION; PARABOLIC BOUNDARY-VALUE PROBLEMS; NITSCHE METHOD;
D O I
10.1080/01630569108816443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating subspaces are not subject to any boundary conditions. Optimal L(p)(L2) error estimates are derived for both smooth and nonsmooth boundary data. The approach is based on semigroup theory combined with the theory of singular integrals.
引用
收藏
页码:469 / 485
页数:17
相关论文
共 21 条