Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles

被引:5
|
作者
Beckmann, J. [1 ]
Mhaskar, H. N. [2 ,3 ]
Prestin, J. [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[3] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Quadrature formulas; Spherical triangles; Gautschi algorithm;
D O I
10.1007/s13137-012-0035-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an explicit construction of quadrature rules exact for integrating multivariate trigonometric polynomials of a given coordinatewise degree on a spherical triangle. The theory is presented in the more general setting of quadrature formulas on a compact subset of the unit hypersphere, S-q, embedded in the Euclidean space Rq+1. The number of points at which the polynomials are sampled is commensurate with the dimension of the polynomial space.
引用
收藏
页码:119 / 138
页数:20
相关论文
共 50 条