FINITE-AUTOMATON APERIODICITY IS PSPACE-COMPLETE

被引:44
作者
CHO, S
HUYNH, DT
机构
[1] Computer Science Program, University of Texas at Dallas, Richardson
基金
美国国家科学基金会;
关键词
D O I
10.1016/0304-3975(91)90075-D
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we solve an open problem raised by Stern (1985) - "Is finite-automation aperiodicity PSPACE-complete?" - by providing an affirmative answer. We also characterize the exact complexity of two other problems considered by Stern: (1) dot-depth-one language recognition and (2) piecewise testable language recognition. We show that these two problems are logspace-complete for NL (the class of languages accepted by nondeterministic logspace-bounded Turing machines.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 9 条
[1]  
CHO S, 1988, UTDCS2288 U TEX TECH
[2]  
HARDY GH, 1954, INTRO THEORY NUMBERS, P343
[3]  
Hopcroft J. E., 1979, INTRO AUTOMATA THEOR
[4]   NONDETERMINISTIC SPACE IS CLOSED UNDER COMPLEMENTATION [J].
IMMERMAN, N .
SIAM JOURNAL ON COMPUTING, 1988, 17 (05) :935-938
[5]  
Kozen D., 1977, 18th Annual Symposium on Foundations of Computer Science, P254, DOI 10.1109/SFCS.1977.16
[6]  
Savitch W.J., 1970, J COMPUT SYST SCI, V4, P177, DOI [10.1016/S0022-0000(70)80006-X, DOI 10.1016/S0022-0000(70)80006-X]
[7]   ON FINITE MONOIDS HAVING ONLY TRIVIAL SUBGROUPS [J].
SCHUTZENBERGER, MP .
INFORMATION AND CONTROL, 1965, 8 (02) :190-+
[8]  
Simon I., 1975, Automata Theory and Formal Language 2nd GI Conference, P214
[9]   COMPLEXITY OF SOME PROBLEMS FROM THE THEORY OF AUTOMATA [J].
STERN, J .
INFORMATION AND CONTROL, 1985, 66 (03) :163-176