LEAST-SQUARES METHODS FOR OPTIMAL SHAPE DESIGN-PROBLEMS

被引:13
作者
BEDIVAN, DM
FIX, GJ
机构
[1] Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408
关键词
LEAST SQUARES; FINITE ELEMENT; OPTIMAL SHAPE DESIGN; FREE BOUNDARY PROBLEM; SEMICONDUCTOR PROBLEM;
D O I
10.1016/0898-1221(95)00074-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Least-Squares method for solving an optimal shape design problem which appears in semiconductor device physics is described. Discretization by finite element methods is used for numerical solving. An example and experimental results are presented.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
[21]   The conditioning of least-squares problems in variational data assimilation [J].
Tabeart, Jemima M. ;
Dance, Sarah L. ;
Haben, Stephen A. ;
Lawless, Amos S. ;
Nichols, Nancy K. ;
Waller, Joanne A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
[22]   MIMETIC LEAST-SQUARES: A LEAST-SQUARES FORMULATION WITH EXACT CONSERVATION PROPERTIES [J].
Bochev, Pavel ;
Gerritsma, Marc .
11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, :4428-4439
[23]   The optimisation of the mesh in first-order systems least-squares methods [J].
Tourigny, Y .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 24 (02) :219-245
[24]   Least-squares finite element methods for the elasticity problem [J].
Yang, SY ;
Liu, JL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) :39-60
[25]   The Optimisation of the Mesh in First-Order Systems Least-Squares Methods [J].
Yves Tourigny .
Journal of Scientific Computing, 2005, 24 :219-245
[26]   LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM ELECTRODYNAMICS [J].
Brannick, J. ;
Ketelsen, C. ;
Manteuffel, T. ;
McCormick, S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) :398-417
[27]   Spectral Mimetic Least-Squares Methods on Curvilinear Grids [J].
Hjort, R. O. ;
Gervang, B. .
LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 :111-118
[28]   Collective marking for arbitrary order adaptive least-squares finite element methods with optimal rates [J].
Carstensen, Carsten ;
Ma, Rui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 95 :271-281
[29]   A NOTE ON DEFERRED CORRECTION FOR EQUALITY CONSTRAINED LEAST-SQUARES PROBLEMS [J].
BARLOW, JL ;
VEMULAPATI, UB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :249-256
[30]   The least-squares meshfree method for solving linear elastic problems [J].
Kwon, KC ;
Park, SH ;
Jiang, BN ;
Youn, SK .
COMPUTATIONAL MECHANICS, 2003, 30 (03) :196-211