CENTRALIZED MULTISENSOR FUSION ALGORITHMS FOR TRACKING APPLICATIONS

被引:15
作者
PAO, LY
机构
[1] Department of Electrical Engineering and Computer Science, Northwestern University, Evanston
关键词
DATA ASSOCIATION; NONLINEAR FILTERING; SENSOR FUSION; STATE ESTIMATION; TARGET TRACKING;
D O I
10.1016/0967-0661(94)90351-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two single-sensor tracking algorithms, Joint Probabilistic Data Association (JPDA) and Mixture Reduction (MR), are extended for use in multisensor multitarget tracking situations, under the assumption that the sensor measurement errors are independent across sensors. In the formulations for both multisensor algorithms, the equations for the calculation of the data association probabilities have been put in the same form as for the JPDA, thus allowing previously developed fast JPDA computational techniques to be applicable. The computational complexity of these multisensor algorithms is discussed, and simulation results are presented demonstrating and comparing the performances of these and other multisensor fusion algorithms.
引用
收藏
页码:875 / 887
页数:13
相关论文
共 50 条
  • [1] Static/dynamic distributed interacting multiple model fusion algorithms for multiplatform multisensor tracking
    Ding, Z
    Hong, L
    OPTICAL ENGINEERING, 1997, 36 (03) : 708 - 715
  • [2] Alternatives to Monte-Carlo simulation evaluations of two multisensor fusion algorithms
    Frei, CW
    Pao, LY
    AUTOMATICA, 1998, 34 (01) : 103 - 110
  • [3] A practical tracking algorithm of multisensor data fusion
    Dai, YP
    Chen, J
    Hirasawa, K
    Wu, YH
    SICE 2000: PROCEEDINGS OF THE 39TH SICE ANNUAL CONFERENCE, INTERNATIONAL SESSION PAPERS, 2000, : 247 - 250
  • [4] Comparison of sampling-based algorithms for multisensor distributed target tracking
    Nguyen, TM
    Jilkov, VP
    Li, XR
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 114 - 121
  • [5] The optimal order of processing sensor information in sequential multisensor fusion algorithms
    Pao, LY
    Trailovic, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) : 1532 - 1536
  • [6] Multisensor Tracking of Marine Targets - Decentralized Fusion of Kalman and Neural Filters
    Stateczny, Andrzej
    Kazimierski, Witold
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, 57 (01) : 65 - 70
  • [7] Joint Data Association, Spatiotemporal Bias Compensation and Fusion for Multisensor Multitarget Tracking
    Bu, Shizhe
    Zhou, Gongjian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1509 - 1523
  • [8] A multisensor data fusion-based target tracking system
    Mort, N
    Prajitno, P
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 427 - 432
  • [9] Efficient multisensor fusion using multidimensional assignment for multitarget tracking
    Kirubarajan, T
    Wang, H
    Bar-Shalom, Y
    Pattipati, KR
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VII, 1998, 3374 : 14 - 25
  • [10] Multisensor Multitarget Tracking Arithmetic Average Fusion Method Based on Probabilistic Time Window
    Wang, Kuiwu
    Zhang, Qin
    Hu, Xiaolong
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 3583 - 3593