ON THE MASLOV INDEX

被引:175
作者
CAPPELL, SE
LEE, R
MILLER, EY
机构
[1] YALE UNIV,NEW HAVEN,CT 06520
[2] POLYTECH UNIV NEW YORK,NEW YORK,NY
关键词
D O I
10.1002/cpa.3160470202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give four definitions of Maslov index and show that they all satisfy the same system of axioms and hence are equivalent to each other. Moreover, relationships of several symplectic and differential geometric, analytic, and topological invariants (including triple Maslov indices, eta invariants, spectral flow and signatures of quadratic forms) to the Maslov index are developed and formulae relating them are given. The broad presentation is designed with a view to applications both in geometry and in analysis. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:121 / 186
页数:66
相关论文
共 33 条
[1]  
ARNOLD VI, 1985, STURM THEOREMS SYMPL, V19, P11
[2]  
Atiyah M., 1969, PUBL IHES, V37, P305
[3]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .2. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (NOV) :405-432
[4]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[6]  
CAPPELL S, 1993, SELFADJOINT ELLIPTIC, V1
[7]  
CAPPELL S, 1993, SELFADJOINT ELLIPTIC, V2
[8]  
CAPPELL S, 1994, SELFADJOINT ELLIPTIC, V3
[9]   A SYMPLECTIC-GEOMETRY APPROACH TO GENERALIZED CASSON INVARIANTS OF 3-MANIFOLDS [J].
CAPPELL, SE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 22 (02) :269-275
[10]  
CHEEGER J, 1983, J DIFFER GEOM, V18, P575