TRANSVERSALS OF FAMILIES OF SETS IN R(N) AND A CONNECTION BETWEEN THE HELLY AND BORSUK THEOREMS

被引:12
作者
DOLNIKOV, VL
机构
关键词
D O I
10.1070/SM1994v079n01ABEH003491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A criterion is obtained for the existence, given a family of convex sets in R(n), of an m-dimensional plane intersecting all members of the family. The results are a generalization of the theorems of Helly, Horn-Klee, and Borsuk. Also presented are applications of these results to the geometry of convex sets and to combinatorics.
引用
收藏
页码:93 / 107
页数:15
相关论文
共 20 条
[1]  
Alekseev V. M., 1987, NAUKA
[2]   THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS [J].
ALON, N ;
FRANKL, P ;
LOVASZ, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 298 (01) :359-370
[3]   A SOLUTION OF THE PLANK PROBLEM [J].
BANG, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :990-993
[4]  
Borsuk K, 1933, FUND MATH, V20, P177, DOI DOI 10.4064/FM-20-1-177-190
[5]  
DANZER L, 1963, P S PURE MATH, V0007, P00101
[6]  
DOKLNIKOV VL, 1988, STUDIES THEORY FUNCT, P52
[7]  
Dol'nikov V.L., 1981, STUDIES THEORY FUNCT, P30
[8]  
DOLNIKOV VL, 1987, DOKL AKAD NAUK SSSR+, V297, P777
[9]  
DOLNIKOV VL, 1990, QUESTIONS GROUP THEO, P164
[10]  
HADWIGER H, 1964, MONOGRAPHIES ENSEIGN, V2