THE FILTRATION EQUATION IN A CLASS OF FUNCTIONS DECREASING AT INFINITY

被引:64
作者
EIDUS, D
KAMIN, S
机构
关键词
D O I
10.2307/2160476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the Cauchy and external boundary problems for the nonlinear filtration equation with variable density. For each density we define a class phi of initial functions psi, such that for any psi is-an-element-of phi the problem is uniquely solvable in some set of functions decreasing at infinity with respect to space variables.
引用
收藏
页码:825 / 830
页数:6
相关论文
共 6 条
[1]   SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN RN UNDER OPTIMAL CONDITIONS ON INITIAL VALUES [J].
BENILAN, P ;
CRANDALL, MG ;
PIERRE, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :51-87
[2]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[3]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[4]   THE CAUCHY-PROBLEM FOR THE NONLINEAR FILTRATION EQUATION IN AN INHOMOGENEOUS-MEDIUM [J].
EIDUS, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :309-318
[5]  
Kalashnikov A.S., 1963, VESTNIK MOSKOV U 6, V6, P17
[6]  
SABININA ES, 1961, DOKL AKAD NAUK SSSR+, V136, P1034