FERROUS IRON OXIDATION BY ANOXYGENIC PHOTOTROPHIC BACTERIA

被引:509
|
作者
WIDDEL, F
SCHNELL, S
HEISING, S
EHRENREICH, A
ASSMUS, B
SCHINK, B
机构
[1] UNIV CONSTANCE,FAK BIOL,POSTFACH 5560,W-7750 CONSTANCE,GERMANY
[2] MAX PLANCK INST MARINE MIKROBIOL,W-2800 BREMEN,GERMANY
关键词
D O I
10.1038/362834a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E0' = -0.236 V) or Fe(OH)3 + HCO3-/FeCO3 (E0' = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(II) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(II) to brown Fe(III) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.
引用
收藏
页码:834 / 836
页数:3
相关论文
共 50 条
  • [1] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [2] Biotechnology of Anoxygenic Phototrophic Bacteria
    Frigaard, Niels-Ulrik
    ANAEROBES IN BIOTECHNOLOGY, 2016, 156 : 139 - 154
  • [3] Oxidation of green rust by anoxygenic phototrophic Fe(II)-oxidising bacteria
    Han, X.
    Tomaszewski, E. J.
    Sorwat, J.
    Pan, Y.
    Kappler, A.
    Byrne, J. M.
    GEOCHEMICAL PERSPECTIVES LETTERS, 2020, 12 : 52 - 57
  • [4] ANAEROBIC OXIDATION OF FERROUS IRON BY PURPLE BACTERIA, A NEW-TYPE OF PHOTOTROPHIC METABOLISM
    EHRENREICH, A
    WIDDEL, F
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (12) : 4517 - 4526
  • [5] Anoxygenic phototrophic bacteria of waste waters
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    PERSPECTIVES IN BIOTECHNOLOGY, 2001, : 163 - 170
  • [6] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, Srinivas
    Vasavi, D.
    Girisham, S.
    Reddy, S.M.
    Journal of Food Science and Technology, 2003, 40 (05) : 505 - 508
  • [7] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    R. N. Ivanovsky
    O. I. Keppen
    N. V. Lebedeva
    D. S. Gruzdev
    Microbiology, 2020, 89 : 266 - 272
  • [8] Carbonic Anhydrase in Anoxygenic Phototrophic Bacteria
    Ivanovsky, R. N.
    Keppen, I
    Lebedeva, N., V
    Gruzdev, D. S.
    MICROBIOLOGY, 2020, 89 (03) : 266 - 272
  • [9] Production of amylases (α and β) by anoxygenic phototrophic bacteria
    Munjam, S
    Vasavi, D
    Girisham, S
    Reddy, SM
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2003, 40 (05): : 505 - 508
  • [10] Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain
    Heising, S
    Schink, B
    MICROBIOLOGY-SGM, 1998, 144 : 2263 - 2269