SOLVING THE DYNAMIC TRAVELING SALESMAN GAME PROBLEM

被引:5
作者
Belousov, A. A. [1 ]
Berdyshev, Yu. I. [2 ]
Chentsov, A. G. [2 ]
Chikrii, A. A. [1 ]
机构
[1] Natl Acad Sci Ukraine, VM Glushkov Inst Cybernet, Kiev, Ukraine
[2] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg, Russia
关键词
differential game; multi-evader game; order of captures; parallel pursuit;
D O I
10.1007/s10559-010-9252-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A game problem of the successive capture of a team of evaders by a single pursuer under conditions of "simple motions" of the players is analyzed. The performance criterion is the total time all the evaders are captured. It is assumed that the pursuer is guided by the parallel pursuit law. In such a case, the optimal response of the evaders is the straightforward motion with maximum speed. The original infinite-dimensional problem can therefore be reduced to two finite-dimensional problems.
引用
收藏
页码:718 / 723
页数:6
相关论文
共 21 条
[1]  
Belousov A., 2006, 12 INT S DYN GAM APP, P31
[2]  
BERDYSHEV YI, 2008, IZV RAN TEORIYA SIT, P58
[3]  
Blagodatskikh AI., 2009, CONFLICT INTERACTION
[4]   POINT CAPTURE OF 2 EVADERS IN SUCCESSION [J].
BREAKWELL, JV ;
HAGEDORN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 27 (01) :89-97
[5]  
Chentsov A. G., 2008, EXTREMUM ROOTING TAS
[6]  
Chikrii A. A., 1998, INT J MATH GAME THEO, V7, P81
[7]   A NUMERICAL-METHOD FOR THE SOLUTION OF THE SUCCESSIVE PURSUIT-AND-EVASION PROBLEM [J].
CHIKRII, AA ;
SOBOLENKO, LA ;
KALASHNIKOVA, SF .
CYBERNETICS, 1988, 24 (01) :53-59
[8]  
CHIKRII AA, 1987, CYBERNETICS+, V23, P437, DOI 10.1007/BF01078897
[9]  
Chikrii AA., 1992, CONFLICT CONTROLLED
[10]  
Grigorenko NL, 1990, MATH METHODS CONTROL