Results for the n-queens problem on the Mobius board

被引:0
|
作者
Bell, Jordan [1 ]
Stevens, Brett [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the extension of the n-queens problem to the Mobius strip; that is, the problem of placing a maximum number of nonattacking queens on the m x n chessboard for which the left and right edges are twisted connected. We prove the existence of solutions for the m x n Mobius board for classes of m and n with density 25/48 in the set of all m x n Mobius boards, and show the impossibility of solutions for a set of m and n with density 1/16. We also have computed the total number of solutions for the m x m Mobius board for m from 1 to 16.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 50 条
  • [1] THE N-QUEENS PROBLEM
    RIVIN, I
    VARDI, I
    ZIMMERMANN, P
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (07): : 629 - 639
  • [2] N-QUEENS PROBLEM
    BRUEN, A
    DIXON, R
    DISCRETE MATHEMATICS, 1975, 12 (04) : 393 - 395
  • [3] The n-queens completion problem
    Stefan Glock
    David Munhá Correia
    Benny Sudakov
    Research in the Mathematical Sciences, 2022, 9
  • [4] The n-queens completion problem
    Glock, Stefan
    Munha Correia, David
    Sudakov, Benny
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [5] TOROIDAL N-QUEENS PROBLEM
    GOLDSTEIN, RZ
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (04): : 309 - 310
  • [6] A Lower Bound for the n-queens Problem
    Simkin, Michael
    Luria, Zur
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2185 - 2197
  • [7] A SIMPLIFIED SOLUTION OF THE N-QUEENS PROBLEM
    REICHLING, M
    INFORMATION PROCESSING LETTERS, 1987, 25 (04) : 253 - 255
  • [8] The n-queens problem in higher dimensions
    Barr, Jeremiah
    Rao, Shrisha
    ELEMENTE DER MATHEMATIK, 2006, 61 (04) : 133 - 137
  • [9] New Constructions for the n-Queens Problem
    M. Bača
    S. C. López
    F. A. Muntaner-Batle
    A. Semaničová-Feňovčíková
    Results in Mathematics, 2020, 75
  • [10] New Constructions for the n-Queens Problem
    Baca, M.
    Lopez, S. C.
    Muntaner-Batle, F. A.
    Semanicova-Fenovcikova, A.
    RESULTS IN MATHEMATICS, 2020, 75 (01)