DYNAMIC CONNECTIONS AND HIGHER-ORDER LAGRANGIAN SYSTEMS

被引:0
|
作者
OPRIS, D
KLEPP, FC
机构
[1] UNIV TIMISOARA,SEMINAR GEOMETRY & TOPOL,TIMISOARA,ROMANIA
[2] TECH UNIV TIMISOARA,DEPT MATH,TIMISOARA,ROMANIA
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1993年 / 42卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if xi is a (2r)-order differential equation (semispray) on the (2r - 1)-jet bundle T2r-1Q whose paths are solutions of the non-autonomous Lagrange equations, then there is a connection GAMMA on T2r-1Q whose paths are also solutions of the same equations. Moreover, GAMMA is a connection whose associated semispray is precisely xi. This is an extension to higher-order Lagrangian dynamics of a previous result given by M. DE LEON and P. RODRIGUES [3].
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] SOME HIGHER-ORDER OPERATIONS WITH CONNECTIONS
    KOLAR, I
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1974, 24 (02) : 311 - 330
  • [22] ESTIMATING DAMPING IN HIGHER-ORDER DYNAMIC-SYSTEMS
    BANHAM, JW
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (01) : 273 - 275
  • [23] HIGHER-ORDER DYNAMIC EQUIVALENTS FOR POWER-SYSTEMS
    AHMEDZAID, S
    SAUER, PW
    WINKELMAN, JR
    AUTOMATICA, 1986, 22 (04) : 489 - 494
  • [24] A Lagrangian description of the higher-order Painlev, equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, N. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 746 - 755
  • [25] QUANTUM COSMOLOGY AND HIGHER-ORDER LAGRANGIAN THEORIES
    VANELST, H
    LIDSEY, JE
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (10) : 2483 - 2497
  • [26] HIGHER-ORDER CONDITIONS FOR SINGULAR LAGRANGIAN DYNAMICS
    GRACIA, X
    PONS, JM
    ROMANROY, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : 1989 - 2004
  • [27] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [28] DERIVATION OF SKYRME LAGRANGIAN AND HIGHER-ORDER TERM
    ITO, A
    PHYSICAL REVIEW D, 1990, 41 (09): : 2930 - 2932
  • [29] NOETHER THEOREM IN HIGHER-ORDER LAGRANGIAN MECHANICS
    MIRON, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (07) : 1123 - 1146
  • [30] A Lagrangian description of the higher-order Painlevé equations
    A. Ghose Choudhury
    Partha Guha
    N. A. Kudryashov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 746 - 755