INFINITE KNEADING MATRICES AND WEIGHTED ZETA-FUNCTIONS OF INTERVAL MAPS

被引:9
作者
BALADI, V [1 ]
机构
[1] ECOLE NORMALE SUPER LYON,CNRS,UMR 128,UNITE MATH PURES & APPLIQUEES,F-69364 LYON 07,FRANCE
关键词
D O I
10.1006/jfan.1995.1029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a piecewise continuous, piecewise monotone interval map and a weight of bounded variation, constant on homtervals and continuous at periodic points of the map. With these data we associate a sequence of weighted Milnor-Thurston kneading matrices, converging to a countable matrix with coefficients analytic functions. We show that the determinants of these matrices converge to the inverse of the correspondingly weighted zeta function for the map. As a corollary, we obtain convergence of the discrete spectrum of the Perron-Frobenius operators of piecewise linear approximations of Markovian, piecewise expanding, and piecewise C-1+BV interval maps. (C) 1995 Academic Press, Inc.
引用
收藏
页码:226 / 244
页数:19
相关论文
共 14 条
[1]   ZETA-FUNCTIONS AND TRANSFER OPERATORS FOR PIECEWISE MONOTONE TRANSFORMATIONS [J].
BALADI, V ;
KELLER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :459-477
[2]   AN EXTENSION OF THE THEOREM OF MILNOR AND THURSTON ON THE ZETA-FUNCTIONS OF INTERVAL MAPS [J].
BALADI, V ;
RUELLE, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 :621-632
[3]  
BALADI V, 1994, IN PRESS 11TH P INT
[4]  
Grothendieck A., 1956, B SOC MATH FRANCE, V84, P319, DOI DOI 10.24033/BSMF.1476
[5]  
HOFBAUER F, 1984, J REINE ANGEW MATH, V352, P100
[6]  
KATO T, 1984, PERTURBATION THEORY
[7]  
MILNOR J, 1988, LECTURE NOTES MATH, V1342
[8]  
MORI M, 1992, OSAKA J MATH, V29, P497
[9]  
MORI M, 1990, OSAKA J MATH, V27, P81
[10]   MEROMORPHIC EXTENSIONS OF GENERALIZED ZETA-FUNCTIONS [J].
POLLICOTT, M .
INVENTIONES MATHEMATICAE, 1986, 85 (01) :147-164