ITERATIVE CONSTRUCTION OF FIXED-POINTS OF ASYMPTOTICALLY NONEXPANSIVE-MAPPINGS

被引:337
作者
SCHU, J
机构
[1] RWTH Aachen, D-5100 Aachen
关键词
D O I
10.1016/0022-247X(91)90245-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a completely continuous and asymptotically nonexpansive self-mapping of a nonempty closed bounded and convex subset of a Hilbert space. Then, under certain conditions, the sequence defined by xn + 1:= αnTn(xn) + (1 - αn) x n converges strongly to some fixed point of T. A similar result is obtained for asymptotically pseudocontractive mappings whose iterates are Lipschitz continuous with respect to some common Lipschitz constant. © 1991.
引用
收藏
页码:407 / 413
页数:7
相关论文
共 13 条
[2]   FIXED-POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS [J].
GOEBEL, K ;
KIRK, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 35 (01) :171-&
[3]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[4]   NOTE ON SEGMENTING MANN ITERATES [J].
GROETSCH, CW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (02) :369-&
[5]   FIXED-POINTS AND ITERATION OF A NONEXPANSIVE MAPPING IN A BANACH-SPACE [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 59 (01) :65-71
[6]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[7]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[8]  
KIRK WA, 1982, FUNCT ANAL OPTIM, V4, P371
[9]  
Qihou L., 1987, J MATH ANAL APPL, V124, P157
[10]   FIXED POINTS IN CONTRASTING REPRESENTATIONS AND WEAKLY CONVERGENT TOEPLITZ METHODS [J].
REINERMANN, J .
ARCHIV DER MATHEMATIK, 1969, 20 (01) :59-+