CONVEX SURFACES WITH POSITIVE BOUNDED SPECIFIC CURVATURE AND A PRIORI ESTIMATES FOR MONGE-AMPERE EQUATIONS

被引:0
作者
NIKOLAEV, IG
SHEFEL, SZ
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:572 / 586
页数:15
相关论文
共 50 条
[31]   EXISTENCE OF A CONVEX SURFACE WITH A GIVEN INTEGRAL CURVATURE IN AN ELLIPTIC SPACE AND THE SOLVABILITY OF MONGE-AMPERE EQUATIONS [J].
KAPLUNOVICH, GJ .
DOKLADY AKADEMII NAUK SSSR, 1981, 257 (05) :1052-1055
[32]   GLOBAL INTERVAL BIFURCATION AND CONVEX SOLUTIONS FOR THE MONGE-AMPERE EQUATIONS [J].
Shen, Wenguo .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
[33]   The eigenvalue problem for the Monge-Ampere operator on general bounded convex domains [J].
Le, Nam Q. .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (04) :1519-1559
[34]   GEOMETRY OF MONGE-AMPERE EQUATIONS [J].
MORIMOTO, T .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (01) :25-28
[35]   ON THE SOLVABILITY OF MONGE-AMPERE TYPE EQUATIONS IN NONUNIFORMLY CONVEX DOMAINS [J].
KUTEV, N .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (02) :167-176
[36]   CONVEX SOLUTIONS OF SYSTEMS ARISING FROM MONGE-AMPERE EQUATIONS [J].
Wang, Haiyan .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
[37]   Classification of Monge-Ampere Equations [J].
Kushner, Alexei G. .
DIFFERENTIAL EQUATIONS: GEOMETRY, SYMMETRIES AND INTEGRABILITY - THE ABEL SYMPOSIUM 2008, 2009, 5 :223-256
[38]   Elliptic Solutions to Nonsymmetric Monge-Ampere Type Equations II. A Priori Estimates and the Dirichlet Problem [J].
Ha Tien Ngoan ;
Thai Thi Kim Chung .
ACTA MATHEMATICA VIETNAMICA, 2019, 44 (03) :723-749
[39]   A CLASSIFICATION OF MONGE-AMPERE EQUATIONS [J].
LYCHAGIN, VV ;
RUBTSOV, VN ;
CHEKALOV, IV .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1993, 26 (03) :281-308
[40]   Schauder estimates for degenerate Monge-Ampere equations and smoothness of the eigenfunctions [J].
Le, Nam Q. ;
Savin, Ovidiu .
INVENTIONES MATHEMATICAE, 2017, 207 (01) :389-423