GLOBAL ATTRACTOR OF THE WEAKLY DAMPED WAVE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

被引:2
作者
Zhu, Chaosheng [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2012年 / 27卷 / 01期
关键词
wave equation; nonlinear boundary conditions; global attractor;
D O I
10.4134/CKMS.2012.27.1.097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the main purpose is to study existence of the global attractorsf or the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence of a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 12 条
[1]  
Anibal R. B., 2002, J DIFFER EQUATIONS, V181, P165
[2]   Attractors for parabolic problems with nonlinear boundary conditions [J].
Carvalho, AN ;
Oliva, SM ;
Pereira, AL ;
RodriguezBernal, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (02) :409-461
[3]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[4]  
KOMORNIK V, 1990, J MATH PURE APPL, V69, P33
[5]   Long-time behavior of solutions to a semilinear wave equation with boundary damping [J].
Kostin, IN .
DYNAMICS AND CONTROL, 2001, 11 (04) :371-388
[6]   DECAY OF SOLUTIONS OF WAVE-EQUATIONS IN A BOUNDED REGION WITH BOUNDARY DISSIPATION [J].
LAGNESE, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) :163-182
[7]   UNIFORM STABILIZATION OF THE WAVE-EQUATION WITH DIRICHLET OR NEUMANN FEEDBACK-CONTROL WITHOUT GEOMETRICAL CONDITIONS [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 25 (02) :189-224
[9]  
Rivera J. E. M., 1992, ANN FS TOULOUSE MATH, V1, P237
[10]   UNIFORM DECAY-RATES AND ATTRACTORS FOR EVOLUTION PDES WITH BOUNDARY DISSIPATION [J].
TATARU, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (01) :1-27