ON ITERATED MINIMIZATION IN NONCONVEX OPTIMIZATION

被引:15
作者
JONGEN, HT [1 ]
MOBERT, T [1 ]
TAMMER, K [1 ]
机构
[1] TH LEIPZIG, SEKT MATH & RECHENTECHN, DDR-7030 LEIPZIG, GERMANY
关键词
OPERATIONS RESEARCH - OPTIMIZATION;
D O I
10.1287/moor.11.4.679
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In dynamic programming and decomposition methods one often applies an iterated minimization procedure. The problem variables are partitioned into several blocks, say x and y. Treating y as a parameter, the first phase consists of minimization with respect to the variable x. In a second phase the minimization of the resulting optimal value function depending on y is considered. In this paper we treat this basic idea on a local level. It turns out that strong stability (in the sense of M. Kojima) in the first phase is a natural assumption. In order to show that the iterated local minima of the parametric problem lead to a local minimum for the whole problem, we use a generalized version of a positive definiteness criterion of Fujiwara-Han-Mangasarian.
引用
收藏
页码:679 / 691
页数:13
相关论文
共 15 条
[1]  
BANK B, 1979, ANWENDUNGEN LINEAREN, P107
[2]  
Beer K., 1977, LOSUNG GROSSER LINEA
[3]  
Bellman R., 1957, DYNAMIC PROGRAMMING
[4]  
BENDERS JF, 1962, NUMER MATH, V4, P238, DOI [DOI 10.1007/BF01386316, DOI 10.1007/S10287-004-0020-Y]
[5]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[6]   LOCAL DUALITY OF NONLINEAR PROGRAMS [J].
FUJIWARA, O ;
HAN, SP ;
MANGASARIAN, OL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) :162-169
[7]  
GAUVIN J, 1982, MATH PROGRAMMING DAT, V1
[8]  
KOJIMA M, 1980, 4 TOK I TECHN DEP MA
[9]  
KOJIMA M, 1980, ANAL COMPUTATION FIX
[10]  
LASDON L, 1970, OPTIMIZATION THEORY