ON THE CLASSIFICATION OF MODULAR FUSION ALGEBRAS

被引:35
作者
EHOLZER, W [1 ]
机构
[1] UNIV BONN,INST PHYSIOL,D-53115 BONN,GERMANY
关键词
D O I
10.1007/BF02101810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the notion of (nondegenerate) strongly-modular fusion algebras. Here strongly-modular means that the fusion algebra is induced via Verlinde's formula by a representation of the modular group Gamma = SL(2, Z) whose kernel contains a congruence subgroup. Furthermore, nondegenerate means that the conformal dimensions of possibly underlying rational conformal field theories do not differ by integers. Our main result is the classification of all strongly-modular fusion algebras of dimension two, three and four and the classification of all nondegenerate strongly-modular fusion algebras of dimension less than 24. We use the classification of the irreducible representations of the finite groups SL(2, Z(p lambda)), where p is a prime and lambda, a positive integer. Finally, we give polynomial realizations and fusion graphs for all simple nondegenerate strongly-modular fusion algebras of dimension less than 24.
引用
收藏
页码:623 / 659
页数:37
相关论文
共 21 条
[11]  
Huang Yonggang, COMMUNICATION
[12]   FUCHSIAN DIFFERENTIAL-EQUATIONS FOR CHARACTERS ON THE TORUS - A CLASSIFICATION [J].
KIRITSIS, EB .
NUCLEAR PHYSICS B, 1989, 324 (02) :475-494
[13]   ON THE CLASSIFICATION OF RATIONAL CONFORMAL FIELD-THEORIES [J].
MATHUR, SD ;
MUKHI, S ;
SEN, A .
PHYSICS LETTERS B, 1988, 213 (03) :303-308
[14]   IRREDUCIBLE REPRESENTATIONS OF GROUPS SL2(ZP), ESPECIALLY SL2(Z2) .1. [J].
NOBS, A .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (04) :465-489
[15]  
NOBS A, 1976, COMMENT MATH HELV, V51, P491, DOI 10.1007/BF02568171
[16]   MEROMORPHIC C=24 CONFORMAL FIELD-THEORIES [J].
SCHELLEKENS, AN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (01) :159-185
[17]   TOWARD CLASSIFICATION OF CONFORMAL THEORIES [J].
VAFA, C .
PHYSICS LETTERS B, 1988, 206 (03) :421-426
[18]   FUSION RULES AND MODULAR TRANSFORMATIONS IN 2D CONFORMAL FIELD-THEORY [J].
VERLINDE, E .
NUCLEAR PHYSICS B, 1988, 300 (03) :360-376
[19]  
ZAGIER D, COMMUNICATION
[20]  
Zhu Y.-C., 1990, THESIS YALE U