EFFICIENT ALGORITHMS FOR MAPPING AND PARTITIONING A CLASS OF PARALLEL COMPUTATIONS

被引:2
作者
CHOI, HA
NARAHARI, B
机构
[1] Department of Electrical Engineering and Computer Science, The George Washington University, Washington
关键词
D O I
10.1006/jpdc.1993.1117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the problem of mapping task graph modules to processors in a parallel machine. A mapping seeks to minimize the maximum load assigned to a processor, a metric which often determines the completion time of the entire task. We consider a special case where the task graph is a chain of modules and the processors communicate through a linear array interconnection network. We first present an O(mp) algorithm to optimally map a chain of m modules onto a linear array of p processors. This algorithm provides an improvement over the hitherto best known complexity for this problem, O(mp log m). We then address the problem of mapping n independent tasks, where each is a chain of m modules, onto a partitionable architecture consisting of a linear array of p processors and a host processor. We provide polynomial time algorithms for three different instances of this problem. © 1993 Academic Press, Inc.
引用
收藏
页码:349 / 363
页数:15
相关论文
共 24 条
[1]   THE WARP COMPUTER - ARCHITECTURE, IMPLEMENTATION, AND PERFORMANCE [J].
ANNARATONE, M ;
ARNOULD, E ;
GROSS, T ;
KUNG, HT ;
LAM, M ;
MENZILCIOGLU, O ;
WEBB, JA .
IEEE TRANSACTIONS ON COMPUTERS, 1987, 36 (12) :1523-1538
[2]   PARTITIONING PROBLEMS IN PARALLEL, PIPELINED, AND DISTRIBUTED COMPUTING [J].
BOKHARI, SH .
IEEE TRANSACTIONS ON COMPUTERS, 1988, 37 (01) :48-57
[3]  
BOKHARI SH, 1981, IEEE T COMPUT, V30, P207, DOI 10.1109/TC.1981.1675756
[4]  
BOLLINGER S, 1981, IEEE T COMPUT, V40, P325
[5]  
CHAN TF, 1986, IEEE T COMPUT, V35
[6]  
CHOUDHARY AN, 1988 P INT C PAR PRO
[7]  
Du J., 1989, SIAM J DISCRETE MATH, V2, P473, DOI DOI 10.1137/0402042
[8]  
EVEN S., 1979, GRAPH ALGORITHMS
[9]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[10]  
HAYES JP, 1986 P INT C PAR PRO