Riesz potentials of Radon measures associated to reflection groups

被引:1
作者
Gallardo, Leonard [1 ]
Rejeb, Chaabane [1 ,2 ]
Sifi, Mohamed [2 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, UMR 7350, CNRS, Campus Grandmont, F-37200 Tours, France
[2] Univ Tunis El Manar, Fac Sci Tunis, Lab Anal Math & Applicat LR11ES11, Tunis 2092, Tunisia
关键词
Reflection groups; Dunkl-Laplace operator; Dunkl heat kernel; generalized volume mean operator; Dunkl subharmonic functions; Riesz kernel and potentials; Hedberg's inequality;
D O I
10.1515/apam-2017-0057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a root system R on R-d and a nonnegative multiplicity function k on R, we consider the heat kernel p(k)(t, x, y) associated to the Dunkl Laplacian operator Delta(k). For beta epsilon]0, d + 2y [, where y = 1/2 Sigma(alpha epsilon R) k(alpha), we study the Delta(k)- Riesz kernel of index beta, defined by R-k,R- beta (x, y) = 1/Gamma(beta/2)integral(+infinity)(0) t(beta/2-1) pk (t, x, y) dt, and the corresponding Delta(k)- Riesz potential I-k, beta[mu] of a Radon measure mu on R d. According to the values of beta, we study the Delta(k)- superharmonicity of these functions, and we give some applications like the Delta(k)- Riesz measure of I-k, beta [mu], the uniqueness principle and a pointwise Hedberg inequality.
引用
收藏
页码:109 / 130
页数:22
相关论文
共 31 条
[1]  
Adams DR., 1996, FUNDAMENTAL PRINCIPL, V314
[2]  
[Anonymous], 1990, CAMBRIDGE STUD ADV M
[3]  
Armitage DH., 2001, SPRINGER MONOGRAPHS
[4]   A transference theorem for the Dunkl transform and its applications [J].
Dai, Feng ;
Wang, Heping .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (12) :4052-4074
[5]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[6]   Two results on the Dunkl maximal operator [J].
Deleaval, Luc .
STUDIA MATHEMATICA, 2011, 203 (01) :47-68
[7]  
Dunkl C.F., 1992, CONTEMP MATH-SINGAP, V138, P123
[8]  
Dunkl C.F., 2001, ENCY MATH APPL, V81
[9]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[10]  
Gallardo L., 2016, DUNKL THEORY