On the shape and dimension of the Lorenz attractor

被引:38
作者
Doering, CR [1 ]
Gibbon, JD [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND
来源
DYNAMICS AND STABILITY OF SYSTEMS | 1995年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1080/02681119508806207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown how the global attractor of the Lorenz equations is contained in a volume bounded by a sphere, a cylinder, the volume between two parabolic sheets, an ellipsoid and a cone. The first four are absorbing volumes while the interior of the cone is expelling. By a numerical search over these volumes, it is found that the origin is the most unstable point on the attractor and that an upper bound for the attractor's Lyapunov dimension is 2.401 when b = 8/3, r = 28 and sigma = 10.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 15 条
[1]  
BARTUCCELLI MV, 1990, PHYSICA D, V30, P284
[2]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[3]  
CONSTANTIN P, 1988, PHYSICA D, V4, P421
[4]  
DOERING CR, 1995, APPLIED ANAL NAVIER
[5]  
EDEN A, 1991, J DYN DIFFER EQU, V3, P133
[6]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[7]  
Jackson E A, 1990, PERSPECTIVES NONLINE
[8]  
KAPLAN J, 1979, LECTURE NOTES MATH, V730
[9]  
LORENZ E, 1979, LECTURE NOTES MATH, V755
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO