SEMIPARAMETRIC RANDOM COEFFICIENT REGRESSION-MODELS

被引:9
作者
BERAN, R
机构
[1] Department of Statistics, University of California, Berkeley, Berkeley, 94720, CA
关键词
MINIMUM DISTANCE; EMPIRICAL CHARACTERISTIC FUNCTION; ERRORS-IN-VARIABLES; DECONVOLUTION; RANDOM EFFECTS; STATISTICAL INFERENCE;
D O I
10.1007/BF00774778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Linear regression models with random coefficients express the idea that each individual sampled may have a different linear response function. Technically speaking, random coefficient regression encompasses a rich variety of submodels. These include deconvolution or affine-mixture models as well as certain classical linear regression models that have heteroscedastic errors, or errors-in-variables, or random effects. This paper studies minimum distance estimates for the coefficient distributions in a general, semiparametric, random coefficient regression model. The analysis yields goodness-of-fit tests for the semiparametric model, prediction regions for future responses, and confidence regions for the distribution of the random coefficients.
引用
收藏
页码:639 / 654
页数:16
相关论文
共 21 条
[1]  
Amemiya T, 1977, J ECONOMETRICS, V6, P365, DOI DOI 10.1016/0304-4076(77)90006-9
[2]   INFORMATION AND ASYMPTOTIC EFFICIENCY IN PARAMETRIC NONPARAMETRIC MODELS [J].
BEGUN, JM ;
HALL, WJ ;
HUANG, WM ;
WELLNER, JA .
ANNALS OF STATISTICS, 1983, 11 (02) :432-452
[3]   BALANCED SIMULTANEOUS CONFIDENCE SETS [J].
BERAN, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :679-686
[4]   ESTIMATING COEFFICIENT DISTRIBUTIONS IN RANDOM COEFFICIENT REGRESSIONS [J].
BERAN, R ;
HALL, P .
ANNALS OF STATISTICS, 1992, 20 (04) :1970-1984
[5]  
BERAN R, 1991, NATO ADV SCI I C-MAT, V335, P577
[6]  
BERAN R, 1986, ANN STAT, V14, P171
[7]  
BERAN R, 1991, UNPUB MINIMUM DISTAN
[8]  
CHOW GC, 1983, HDB ECONOMETRICS, V2
[9]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[10]  
Goldfeld SM, 1972, NONLINEAR METHODS EC