A NEW ENERGY FUNCTIONAL FOR NONLINEAR STABILITY OF THE CLASSICAL BENARD PROBLEM

被引:0
|
作者
Xu, Lanxi [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
来源
MATEMATICHE | 2006年 / 61卷 / 02期
关键词
Nonlinear stability; Rayleigh number; Benard problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonlinear stability of motionless state of the classical Benard problem in case of stress- free boundaries is studied for 2-dimensional disturbances, by the Liapunov's second method. For Rayleigh number smaller than 27p4/4 the motionless state is proved to be unconditionally and exponentially stable with respect to a new Liapunov function which is essentially stronger than the kinetic energy.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 50 条