Conformal Geometry and the Composite Membrane Problem

被引:6
作者
Chanillo, Sagun [1 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Fretinghuysen Rd, Piscataway, NJ 08854 USA
来源
ANALYSIS AND GEOMETRY IN METRIC SPACES | 2013年 / 1卷
基金
美国国家科学基金会;
关键词
Eigenvalue Minimization in Conformal classes; GJMS operators; Composite Membrane problem; Free Boundary Problems; Conformal Geometry; Paneitz operator;
D O I
10.2478/agms-2012-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a certain eigenvalue minimization problem in two dimensions for the Laplace operator in conformal classes is equivalent to the composite membrane problem. We again establish such a link in higher dimensions for eigenvalue problems stemming from the critical GJMS operators. New free boundary problems of unstable type arise in higher dimensions linked to the critical GJMS operator. In dimension four, the critical GJMS operator is exactly the Paneitz operator.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 14 条
[1]  
Baum H., 2010, OBERWOLFACH SEMINARS, V40
[2]  
BLANK I, 2004, PDE, V29, P1167, DOI DOI 10.1081/PDE-200033762
[3]  
Chang S. X.-D., PREPRINT
[4]   Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes [J].
Chanillo, S ;
Grieser, D ;
Imai, M ;
Kurata, K ;
Ohnishi, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :315-337
[5]  
Chanillo S., 2000, CONT MATH, V268, P61
[6]  
Chanillo S, 2008, J EUR MATH SOC, V10, P705
[7]   Regularity of the minimizers in the composite membrane problem in R2 [J].
Chanillo, Sagun ;
Kenig, Carlos E. ;
To, Tung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2299-2320
[8]   ASYMPTOTIC FREEDOM IN EXTENDED CONFORMAL SUPERGRAVITIES [J].
FRADKIN, ES ;
TSEYTLIN, AA .
PHYSICS LETTERS B, 1982, 110 (02) :117-122
[9]   ONE-LOOP BETA-FUNCTION IN CONFORMAL SUPERGRAVITIES [J].
FRADKIN, ES ;
TSEYTLIN, AA .
NUCLEAR PHYSICS B, 1982, 203 (01) :157-178
[10]   CONFORMALLY INVARIANT POWERS OF THE LAPLACIAN .1. EXISTENCE [J].
GRAHAM, CR ;
JENNE, R ;
MASON, LJ ;
SPARLING, GAJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 :557-565