Computable Riesz Representation for the Dual of C[ 0; 1]

被引:0
作者
Lu, Hong [1 ]
Weihrauch, Klaus [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 21009, Jiangsu, Peoples R China
[2] Univ Hagen, Dept Math & Comp Sci, Hagen, Germany
基金
中国国家自然科学基金;
关键词
Computable analysis; integration; Riesz representation theorem;
D O I
10.1016/j.entcs.2006.08.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By the Riesz representation theorem for the dual of C[ 0; 1], for every continuous linear operator F: C[ 0; 1] R there is a function g : [0; 1] R of bounded variation such that F(f) = integral f dg ( f is an element of C[ 0; 1]) The function g can be normalized such that V( g) = ||F|| In this paper we prove a computable version of this theorem. We use the framework of TTE, the representation approach to computable analysis, which allows to define natural computability for a variety of operators. We show that there are a computable operator S mapping g and an upper bound of its variation to F and a computable operator S (') mapping F and its norm to some appropriate g.
引用
收藏
页码:157 / 177
页数:21
相关论文
共 11 条
[1]  
Brattka V., 2006, LECT NOTES LOGIC, V27
[2]  
Goffman C., 1965, 1 COURSE FUNCTIONAL
[3]  
Grubba T, 2005, LECT NOTES COMPUT SC, V3733, P927
[4]  
Heuser H, 1986, FUNKTIONALANALYSIS
[5]  
Ko K.-I, 1991, PROGR THEORETICAL CO
[6]  
Rudin W., 1974, REAL COMPLEX ANAL
[7]  
Schechter E, 1997, HDB ANAL ITS FDN
[8]  
Schroder M., 2003, THESIS
[9]  
WEIHRAUCH K, 2005, INFORM BERICHTE, V326, P267
[10]  
Weihrauch K., 2000, COMPUTABLE ANAL