WHICH TOPOLOGIES ARE QUASIMETRIZABLE

被引:6
作者
KOPPERMAN, RD [1 ]
机构
[1] CUNY CITY COLL,DEPT MATH,NEW YORK,NY 10031
关键词
QUASIMETRIZABLE; CONJUGATE; ENCLOSING SET RELATION; PAIR BASE; PAIR GENERATOR; (SELF-SIGMA) COCUSHIONED; (LOCAL) QUASIUNIFORMITY; SIGMA-ALEXANDROFF SPACE;
D O I
10.1016/0166-8641(93)90029-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterization of quasimetrizable spaces is given; they are those whose topologies arise from a sigma-self-cocushioned pairbase whose dual is sigma-self-cocushioned. This is closely related to the known characterization of gamma-spaces as those whose topologies arise from a sigma-self-cocushioned pairbase (with no dual condition). The last section of the paper discusses to what extent this is a topological characterization of quasimetrizability, and notes the absence of a ''Bing-style'' characterization.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 25 条
[1]   METRIZATION OF TOPOLOGICAL SPACES [J].
BING, RH .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1951, 3 (02) :175-186
[2]  
Fletcher P., 1982, LECT NOTES PURE APPL, V77
[3]  
FLETCHER P, 1972, J MATH ANAL APPL, V39, P363
[4]  
Fox R., METRIZABILITY QUASIM
[5]  
GRUENHAGE G, 1983, HDB SET THEORETIC TO, P423
[6]   A GENERAL-THEORY OF STRUCTURE SPACES WITH APPLICATIONS TO SPACES OF PRIME IDEALS [J].
HENRIKSEN, M ;
KOPPERMAN, R .
ALGEBRA UNIVERSALIS, 1991, 28 (03) :349-376
[7]  
HENRIKSEN M, 1990, GENERAL TOPOLOGY APP, P133
[8]  
Kelley J.L., 1955, GEN TOPOLOGY
[9]  
Kelly J. C., 1963, P LOND MATH SOC, V13, P71, DOI [DOI 10.1112/PLMS/S3-13.1.71, 10.1112/plms/s3-13.1.71]
[10]   COMPUTER-GRAPHICS AND CONNECTED TOPOLOGIES ON FINITE ORDERED SETS [J].
KHALIMSKY, E ;
KOPPERMAN, R ;
MEYER, PR .
TOPOLOGY AND ITS APPLICATIONS, 1990, 36 (01) :1-17