RINGS OF SKEW POLYNOMIALS AND GELFAND-KIRILLOV CONJECTURE FOR QUANTUM GROUPS

被引:18
作者
IOHARA, K
MALIKOV, F
机构
[1] Department of Mathematics, Kyoto University, Kyoto
关键词
D O I
10.1007/BF02101700
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce and study action of quantum groups on skew polynomial rings and related rings of quotients. This leads to a ''q-deformation'' of the Gel'fand-Kirillov conjecture which we partially prove. We propose a construction of automorphisms of certain non-commutative rings of quotients coming from complex powers of quantum group generators; this is applied to explicit calculation of singular vectors in Verma modules over U(q)(sI(n+1)). We finally give a definition of a q-connection with coefficients in a ring of skew polynomials and study the structure of quantum group modules twisted by a q-connection.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 24 条
[1]  
AMOTO K, 1991, SPECIAL FUNCTIONS, P30
[2]  
AWATA H, 1992, KEKTH316
[3]   QUANTUM GROUP-STRUCTURE IN THE FOCK SPACE RESOLUTIONS OF SL-OR-(N) REPRESENTATIONS [J].
BOUWKNEGT, P ;
MCCARTHY, J ;
PILCH, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (01) :125-155
[4]  
BOUWKNEGT P, 1988, PROGR THEORETIC S102, V70, P67
[5]  
DECONCINI C, 1990, PROG MATH, V92, P471
[6]  
FEIGIN B, 1988, USPEKHI MAT NAUK, V0043, P00227
[7]  
FEIGIN B, IN PRESS ADV SOV MAT
[8]  
FEIGIN BL, 1992, COMMUNICATION
[9]   BASIC REPRESENTATIONS OF AFFINE LIE-ALGEBRAS AND DUAL RESONANCE MODELS [J].
FRENKEL, IB ;
KAC, VG .
INVENTIONES MATHEMATICAE, 1980, 62 (01) :23-66
[10]   REDUCTION OF THE RATIONAL SPIN SL(2,C) WZNW CONFORMAL THEORY [J].
FURLAN, P ;
GANCHEV, AC ;
PAUNOV, RR ;
PETKOVA, VB .
PHYSICS LETTERS B, 1991, 267 (01) :63-70