QUASI-REGULAR DIRICHLET FORMS AND MARKOV-PROCESSES

被引:23
作者
ALBEVERIO, S
MA, ZM
ROCKNER, M
机构
[1] ACAD SINICA,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA
[2] UNIV BONN,INST ANGEW MATH,W-5300 BONN 1,GERMANY
关键词
D O I
10.1006/jfan.1993.1007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify an analytic property of a (non-symmetric) Dirichlet form on a general (topological state space called “quasi-regularity” which we prove to be equivalent with the existence of an associated standard Markov process, respectively the existence of an associated pair of right processes. In addition, we prove a one to one correspondence between all quasi-regular Dirichlet forms and all (equivalence classes of) pairs of “m-sectorial" right processes. © 1993 Academic Press Limited.
引用
收藏
页码:118 / 154
页数:37
相关论文
共 36 条
[1]   A NOTE ON QUASI-CONTINUOUS KERNELS REPRESENTING QUASI-LINEAR POSITIVE MAPS [J].
ALBEVERIO, S ;
MA, ZM .
FORUM MATHEMATICUM, 1991, 3 (04) :389-400
[2]  
ALBEVERIO S, 1992, CR ACAD SCI I-MATH, V314, P77
[3]  
ALBEVERIO S, 1991, LECT NOTES MATH, V1485, P374
[4]   DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES [J].
ALBEVERIO, S ;
HOEGHKROHN, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01) :1-57
[5]   A GENERAL CORRESPONDENCE BETWEEN DIRICHLET FORMS AND RIGHT PROCESSES [J].
ALBEVERIO, S ;
MA, ZM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (02) :245-252
[6]  
ALBEVERIO S, 1977, ANN I H POINCARE B, V13, P269
[7]   CLASSICAL DIRICHLET FORMS ON TOPOLOGICAL VECTOR-SPACES - THE CONSTRUCTION OF THE ASSOCIATED DIFFUSION PROCESS [J].
ALBEVERIO, S ;
ROCKNER, M .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (03) :405-434
[8]  
ALBEVERIO S, 1991, IN PRESS FESTSCHRIFT
[9]  
Bauer H., 1978, WAHRSCHEINLICHKEITST
[10]  
Blumenthal R.M., 1968, MARKOV PROCESSES POT