Compactification of closed preordered spaces

被引:0
作者
Mingezzi, E. [1 ]
机构
[1] Univ Florenze, Dipartimento Matemat Appl C Sansone, Via S Marta 3, I-50139 Florence, Italy
关键词
Nachbin compactification; quasi-uniformizable space; completely regularly ordered space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological preordered space admits a Hausdorif T-2-preorder compactification if and only if it is Tychonoff and the preorder is represented by the family of continuous isotone functions. We construct the largest Hausdorff T-2-prcorder compactification for these spaces and clarify its relation with Nachbin's compactification. Under local compactness the problem of the existence and identification of the smallest Hausdorff T-2-preorder compactification is considered.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 31 条
[1]  
Budic R., 1974, MATH PHYS, V15, P1302
[2]   WALLMAN TYPE ORDER COMPACTIFICATION [J].
CHOE, TH ;
PARK, YS .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 82 (02) :339-347
[3]  
Engelking R., 1989, GEN TOPOLOGY, V2nd
[4]  
Fletcher P., 1982, APPL MATH, V77
[5]   IDEAL POINTS IN SPACE-TIME [J].
GEROCH, R ;
PENROSE, R ;
KRONHEIMER, EH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 327 (1571) :545-+
[6]   Universality of the future chronological boundary [J].
Harris, SG .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (10) :5427-5445
[7]  
Hawking SW., 1973, CAMBRIDGE MONOGRAPHS
[8]  
Kent D. C., 1995, INT J MATH MATH SCI, V18, P665
[9]  
Kent D. C., 1990, INT J MATH MATH SCI, V13, P209
[10]  
Kent D.O., 1993, INT J MATH MATH SCI, V16, P117