On Drygas functional equation on groups

被引:0
作者
Faiziev, Valerii A. [1 ]
Sahoo, Prasanna K. [2 ]
机构
[1] Tver State Agr Acad, Tver Sakharovo, Russia
[2] Univ Louisville, Dept Math, Louisville, KY 40292 USA
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2007年 / 7卷 / F07期
关键词
Additive character of a group; bihomomorphism; Drygas functional equation; free group; homomorphism; Jensen functional equation; n-Abelian group; and quadratic functional equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Drygas (1987) introduced the functional equation f(xy) + f(xy(-1)) = 2f(x) + f(y) + f(y(-1)) in connection with the characterization of quasi-inner-product spaces. In this paper, we study the system of functional equations f(xy) + f(xy-1) = 2f(x) + f(y) + f(y-1) and f(yx) + f(y(-1)x) = 2f(x) + f(y) + f(y(-1)) on groups. Here f is a real-valued function that takes values on a group. On groups, this system generalizes the functional equation introduced by Drygas.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 16 条
[2]  
Drygas, 1987, ADV MULTIVARIATE STA, P13
[3]   A COMMON GENERALIZATION OF FUNCTIONAL-EQUATIONS CHARACTERIZING NORMED AND QUASI-INNER-PRODUCT SPACES [J].
EBANKS, BR ;
KANNAPPAN, P ;
SAHOO, PK .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (03) :321-327
[4]   ABELIAN FORCING SETS [J].
GALLIAN, JA ;
REID, M .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (06) :580-582
[5]  
Jung S.-M., 2002, AEQUATIONES MATH, V64, P263, DOI DOI 10.1007/PL00012407
[6]  
Levi F, 1944, J INDIAN MATH SOC, V8, P1
[7]  
Levi F.W., 1945, J INDIAN MATH SOC, V9, P37
[8]   The hypercentre and the n-centre of the unit group of an integral group ring [J].
Li, YL .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02) :401-411
[9]   ON APPROXIMATION OF APPROXIMATELY LINEAR MAPPINGS BY LINEAR MAPPINGS [J].
RASSIAS, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :126-130
[10]  
RASSIAS JM, 1984, B SCI MATH, V108, P445