CONVERGENCE OF RANDOM POWER-SERIES WITH PAIRWISE INDEPENDENT BANACH-SPACE-VALUED COEFFICIENTS

被引:0
作者
ROTERS, M [1 ]
机构
[1] UNIV TRIER,FACHBEREICH MATH STAT 4,W-5500 TRIER,GERMANY
关键词
RANDOM POWER SERIES; RADIUS OF CONVERGENCE; ZERO-ONE LAW; REFINED BOREL-CANTELLI LEMMA;
D O I
10.1016/0167-7152(93)90179-M
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The distribution of the radius of convergence of a random power series with pairwise independent and non-identically distributed Banach-space-valued coefficients is considered. The results obtained here extend the well-known work in the complex-valued, identically distributed case and provide a correction of a theorem in Rohatgi (1975) concerning independent, non-identically distributed coefficients.
引用
收藏
页码:121 / 123
页数:3
相关论文
共 6 条
  • [1] ARNOLD L, 1966, J REINE ANGEW MATH, V222, P79
  • [2] Billingsley P., 1985, PROBABILITY MEASURE
  • [3] CONWAY JB, 1985, COURSE FUNCTIONAL AN
  • [4] POWER SERIES WHOSE COEFFICIENTS FORM HOMOGENEOUS RANDOM PROCESSES
    HOLGATE, P
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 15 (02): : 97 - &
  • [5] LUKACS E, 1975, STOCHASTIC CONVERGEN
  • [6] Rohatgi V. K., 1975, Journal of Multivariate Analysis, V5, P265, DOI 10.1016/0047-259X(75)90043-3