A telescope for LISA - the Laser Interferometer Space Antenna

被引:12
作者
Sanz, Isabel Escudero [1 ]
Heske, Astrid [1 ]
Livas, Jeffrey C. [2 ]
机构
[1] ESA, ESTEC, Keplerlaan 1,POB 299, NL-2200 AG Noordwijk, Netherlands
[2] NASA, Goddard Space Flight Ctr, Code 663 Gravitat Astrophys,8800 Greenbelt Rd, Greenbelt, MD 20771 USA
关键词
gravitational waves; laser interferometry; space missions; telescope design;
D O I
10.1515/aot-2018-0044
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gravitational waves are a prediction of Einstein's general relativity theory. In autumn 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO; https://www.ligo.caltech.edu/) experiment reported the first detection of gravitational waves in addition to electromagnetic radiation from the collision of two neutron stars. This marks the first time that a cosmic event has been viewed in both gravitational waves and light and opens the door to a new type of astronomical observatory based on gravitational waves. The gravitational wave spectrum covers a broad span of frequencies and requires both space- and ground-based observatories to cover the full range. Space-based gravitational wave observatories, such as the proposed Laser Interferometer Space Antenna (LISA), operate at frequencies between 0.1 mHz and 1 Hz and complement the frequency range of 30-1000 Hz accessible by ground-based gravitational wave observatories, such as LIGO. A rich array of high-energy astrophysical sources is expected in the LISA measurement band. LISA was selected in 2017 as the third large mission of the Cosmic Vision program of the European Space Agency. The National Aeronautics and Space Administration will collaborate on both the scientific and technical aspects of this mission. This paper addresses the design of the optical telescope as an essential component of LISA's long-distance interferometric measurement system.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 9 条
[1]   Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 μHz [J].
Armano, M. ;
Audley, H. ;
Baird, J. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Castelli, E. ;
Cavalleri, A. ;
Cesarini, A. ;
Cruise, A. M. ;
Danzmann, K. ;
de Deus Silva, M. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Ferraioli, L. ;
Ferroni, V. ;
Fitzsimons, E. D. ;
Freschi, M. ;
Gesa, L. ;
Gibert, F. ;
Giardini, D. ;
Giusteri, R. ;
Grimani, C. ;
Grzymisch, J. ;
Harrison, I. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. ;
Jennrich, O. ;
Jetzer, P. ;
Karnesis, N. ;
Kaune, B. ;
Korsakova, N. ;
Killow, C. J. ;
Lobo, J. A. ;
Lloro, I. ;
Liu, L. ;
Lopez-Zaragoza, J. P. ;
Maarschalkerweerd, R. ;
Mance, D. ;
Meshksar, N. ;
Martin, V. ;
Martin-Polo, L. ;
Martino, J. ;
Martin-Porqueras, F. ;
Mateos, I. .
PHYSICAL REVIEW LETTERS, 2018, 120 (06)
[2]  
Danzmann and LISA Consortium, 2013, GRAV UN
[3]   LISA technology and instrumentation [J].
Jennrich, O. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (15)
[4]   An acquisition control for the laser interferometer space antenna [J].
Maghami, PG ;
Hyde, TT ;
Kim, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (10) :S421-S428
[5]  
Peabody H, 2006, AIP CONF PROC, V873, P204
[6]  
Preston A., 2010, THESIS
[7]   Note: Silicon carbide telescope dimensional stability for space-based gravitational wave detectors [J].
Sanjuan, J. ;
Korytov, D. ;
Mueller, G. ;
Spannagel, R. ;
Braxmaier, C. ;
Preston, A. ;
Livas, J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (11)
[8]   Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope [J].
Sanjuan, J. ;
Preston, A. ;
Korytov, D. ;
Spector, A. ;
Freise, A. ;
Dixon, G. ;
Livas, J. ;
Mueller, G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (12)
[9]   Initial progress with numerical modelling of scattered light in a candidate eLISA telescope [J].
Sankar, Shannon R. ;
Livas, Jeffrey C. .
10TH INTERNATIONAL LISA SYMPOSIUM, 2015, 610